Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 910709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720120

RESUMO

Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.

2.
Appl Microbiol Biotechnol ; 106(1): 301-315, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34910238

RESUMO

N-glycosylation is an important posttranslational modification affecting the properties and quality of therapeutic proteins. Glycoengineering in yeast aims to produce proteins carrying human-compatible glycosylation, enabling the production of therapeutic proteins in yeasts. In this work, we demonstrate further development and characterization of a glycoengineering strategy in a Saccharomyces cerevisiae Δalg3 Δalg11 strain where a truncated Man3GlcNAc2 glycan precursor is formed due to a disrupted lipid-linked oligosaccharide synthesis pathway. We produced galactosylated complex-type and hybrid-like N-glycans by expressing a human galactosyltransferase fusion protein both with and without a UDP-glucose 4-epimerase domain from Schizosaccharomyces pombe. Our results showed that the presence of the UDP-glucose 4-epimerase domain was beneficial for the production of digalactosylated complex-type glycans also when extracellular galactose was supplied, suggesting that the positive impact of the UDP-glucose 4-epimerase domain on the galactosylation process can be linked to other processes than its catalytic activity. Moreover, optimization of the expression of human GlcNAc transferases I and II and supplementation of glucosamine in the growth medium increased the formation of galactosylated complex-type glycans. Additionally, we provide further characterization of the interfering mannosylation taking place in the glycoengineered yeast strain. KEY POINTS: • Glycoengineered Saccharomyces cerevisiae can form galactosylated N-glycans. • Genetic constructs impact the activities of the expressed glycosyltransferases. • Growth medium supplementation increases formation of target N-glycan structure.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Glicosilação , Humanos , Polissacarídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-32296695

RESUMO

Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.

4.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922547

RESUMO

N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Imunoglobulina G/metabolismo , Engenharia Metabólica , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilação , Humanos , Imunoglobulina G/genética , Lipídeos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Methods Mol Biol ; 1923: 227-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30737743

RESUMO

The ability to control and adjust the N-glycosylation pathway of Saccharomyces cerevisiae is a key step toward production of therapeutic glycoproteins such as antibodies or erythropoietin. The focus of this chapter is to describe the road from yeast-type N-glycosylation to human-type complex N-glycosylation. The chapter describes the cell engineering and provides the detailed analytical procedures required to perform glycan analysis using MALDI-TOF mass spectrometry.


Assuntos
Polissacarídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Glycoconj J ; 33(2): 189-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26983412

RESUMO

N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.


Assuntos
Polissacarídeos Fúngicos/biossíntese , Oligossacarídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Configuração de Carboidratos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/genética , Deleção de Genes , Glicosilação , Humanos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/química , Oligossacarídeos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
N Biotechnol ; 31(6): 532-7, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-24632452

RESUMO

N-linked glycosylation of proteins is one of the most common posttranslational modifications. N-glycan structures and N-glycosylation efficiency are crucial parameters in the production of N-glycosylated proteins. Yeast cells can be seen as an attractive production host for therapeutic glycoproteins and pioneering work of glycoengineering was performed in Pichia pastoris, realizing yeast strains capable of producing defined, human-type N-glycans. Most strategies used for glycoengineering rely on the modification of the lipid-linked oligosaccharide biosynthesis for the generation of the substrate for Golgi-localized glycosyltransferases. However, modifications in the lipid-linked oligosaccharide biosynthesis often result in the accumulation of intermediate structures and cause hypoglycosylation of client proteins. In order to ensure complete N-glycosylation, the flow of lipid-linked oligosaccharide through the biosynthetic pathway and the transfer of the oligosaccharide from the donor lipid onto the protein have to be optimized. A promising tool to improve site occupancy is the expression of protozoan oligosaccharyltransferases, which possess altered specificities for the oligosaccharide and also for the protein acceptor site. Furthermore, flipping of the lipid-linked oligosaccharide into the ER lumen can be improved by overexpression of an artificial flippase. Improving the glycosylation efficiency ensures that not only homogeneous N-glycan structures are generated, but also client proteins are fully glycosylated.


Assuntos
Metabolismo dos Carboidratos , Pichia/metabolismo , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...